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I.    INTRODUCTION 
Nigeria’s Electrical power industry restructuring has 
created highly vibrant and competitive market that altered 
many aspects of the power industry. In this changed 
scenario, there is scarcity of energy resources, increasing 
power generation cost, environment concern, and an ever 
growing demand for electrical energy. 
The cost of products and services is no doubt a major 
concern to the engineer; hence the efficient optimum 
economic operation and planning of electric power 
generation system have always occupied an important 
position in the Nigerian electric power industry.  
 
With the large interconnection of the electric networks in 
the grid, the energy crisis in Nigeria generally and the 
South/South zone - to be specific- and the ever continuous 
rise in prices, it is very essential to reduce the running 
charges of the electric energy. A saving in the operation of 
the system of a small percent represents a significant 
reduction in operating cost as well as in the quantities of 
fuel consumed. The classic problem is the economic load 
dispatch of generating systems to achieve minimum 
operating cost. 
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This problem area has taken a subtle twist as the public 
especially in the South region, has become increasingly 
concerned with environmental matters, so that economic 
dispatch now includes the dispatch of systems to minimize 
pollutants and conserve various forms of fuel, as well as 
achieve minimum cost. In addition there is a need to 
expand the limited economic optimization problem by 
incorporating constraints on system operation to ensure the 
security of the system, thereby preventing the collapse of 
the entire system due to unforeseen conditions.  
The Nigerian Engineers have been largely successful in 
increasing the efficiency of turbines, generators etc. Any 
generation plant such as Afam or Sapele may contain 
different units such as hydro, thermal, gas etc. These plants 
have different characteristic which gives different 
generating cost at any load. So there should be a proper 
scheduling of plants for the minimization of cost of 
operation. The cost characteristic of the each generating 
unit is also non-linear. So the problem of achieving the 
minimum cost becomes an on-linear problem and also a 
difficult one. 
However closely associated with this economic dispatch 
problem is the problem of the proper commitment of any 
array of units out of a total array of units to serve the 
expected load demands in an ‘optimal’ manner. For the 
purpose of optimum economic operation of this large scale 
system, modern system theory and optimization techniques 
such as PSO are being applied with the expectation of 
considerable cost savings. 
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2.2 APPROACHES ADOPTED IN SOLVING LOAD 
DISPATCH 
2.2.1 The Lambda –Iteration Method: 
In Lambda iteration method lambda is the variable 
introduced in solving constraint optimization problem and 
is called Lagrange multiplier. It is important to note that 
lambda can be solved at hand by solving systems of 
equation. Since all the inequality constraints are satisfied in 
each trial, the equations are solved by the iterative method 
as proposed by Zwe-Lee. Gain (2003) and presented in [1]. 
i)  Assume a suitable value of λ (0) this value should be 

more than the largest intercept of the  incremental cost 
characteristic of the various generators. 

ii)  Compute the individual generations 
iii)  Check the equality that satisfies (2.1) 
iv)  If not, make the second guess λ repeat above steps 

𝑃𝑑  =   �𝑃𝑛

𝑛

𝑛=1

                                                                    (2.1) 

2.2.2 The Gradient Search Method: 
This method proposed in [2] used by Park J.H et al (1993) 
works on the principle that the minimum of a function, f(x), 
can be found by a series of steps that always take us in a 
downward direction. From any starting point, x0, we may 
find the direction of “steepest descent” by noting that the 
gradient f, 

  ∇f =

𝜕𝑓
𝜕𝑥
⋮  
𝜕𝑦
𝜕𝑥

                                                   (2.2) 

 
always points in the direction of maximum ascent. 
Therefore, if we want to move in the direction of maximum 
descent, we negate the gradient. Then we should go from x0 
to x1 using: 
x1 = x0 -𝛻𝑓 ∝                    (2.3) 
Where ∝is a scalar to allow us to guarantee that the process 
of convergence. The best value of 
∝ must be determined by experiment 
In case of power system economic load dispatch f becomes 
f = = � 𝐹𝑖  (𝑃i)𝑁

𝑖=1
                                  (2.4) 

The object is to drive the function to its minimum. However 
we have to be concerned with the constraints function 
φ = ( Pload - ∑ 𝑃i𝑁

𝑖=1 )                                  (2.5) 
To solve the economic load dispatch problem which 
involves minimizing the objective function and keeping the 
equality constraints, we must apply the gradient technique 
directly to the 
Lagrange function is: 
ℑ = � 𝐹i (𝑃i𝑁

𝑖=1
) + λ (Pload - ∑ 𝑃i𝑁

𝑖=1 )                                    
(2.6) 
And the gradient of this function is 

∇ℑ =  

𝜕ℑ 
𝜕𝑃𝑖   
𝜕ℑ
𝜕𝑃𝑛

                                                 (2.7) 

The problem with the formulation is the lack of a guarantee 
that the new points generated each step will lie on the 
surface ϕ 
The economic dispatch algorithm requires a starting λ 
value and starting values for 
P1,P2, and P3 .The gradient for ℑ is calculated as above and 
the new values of λ ,P1,and P2 etc, are found from 
X1 = X0 – (𝞩ℑ)ά           
    (2.8a) 
Where X is a vector 
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2.2.3 Newton’s Method: 
Newton’s method as presented in [3] used by 
Aravindhababu  et al (2002) goes a step beyond the simple 
gradient method and tries to solve the economic dispatch 
by observing that the aim is to always drive 
 
∇Ψx = 0              
            (2.8b) 
 
Since this is a vector function, we can formulate the 
problem as one of finding the correction that exactly drives 
the gradient to zero (i.e. to a vector, all of whose elements 
are zero).Suppose we wish to drive the function g(x) to 
zero. The function g is a vector and the unknown, x are also 
vectors. Then to use Newton’s method, we observe 
 
g(x+Δx)=g(x)+[g’(x)] Δx=0                           (2.9) 
Where g’(x) is the familiar Jacobian matrix. The adjustment 
at each step is then 
ΔX = −[g ' (x)]−1 g(x)                            (2.10) 
Now, if we let the g function be the gradient vector ΔΨx we 
get 
∇x = - ⦋ 𝜕

𝜕𝑥
∇ψx⦌-1  Δψ                            (2.11) 

For the economic load dispatch problem this takes the form: 
Ψ = ∑ 𝐹𝑖 (𝑃𝑖)𝑁

𝑖=1 + λ (Pload−∑ 𝑃𝑖 )𝑁
𝑖=1   (2.12) 

The ∇ψx is a Jacobean matrix which has now a second order 
derivative is called Hessian n-matrix. Generally, Newton’s 
method will solve for the correction that is much closer to 
the minimum generation cost in one cost in one step than 
would the gradient method 
 
2.2.4 Economic Dispatch With Piecewise Linear Cost 
Functions: 
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In the method as used by Aravindhababu  et al (2002), 
economic load dispatch problem of those generators are 
solved whose cost functions are represented as single or 
multiple segment linear cost functions. Here for all units 
running, we start with all of them at Pmin, then begin to 
raise the output of the unit with the lowest incremental cost 
segment. If this unit hits the right-hand end of a segment, 
or if it hits Pmax, we then find the unit with the next lowest 
incremental cost segment and raise its output. 
Eventually, we will reach a point where a units output is 
being raised and the total of all unit outputs equal the load, 
or load plus losses. At that point, we assign the last unit 
being adjusted to have a generation which is practically 
loaded for one segment. To make this procedure very fast, 
we can create a table giving each segment of each unit its 
MW contribution. Then we order this table by ascending 
order of incremental cost. By search in from the top down 
in this table, we do not have to go and look for the next 
segment each time a new segment is to be chosen. 
This is an extremely fast form of economic dispatch. 
2.2.5 Base Point and Participation Factor: 
This method assumes that the economic dispatch problem 
has to be solved repeatedly by moving the generators from 
one economically optimum schedule to another as the load 
changes by a reasonably small amount. It is started from a 
given schedule called the base point.  
Next assume a load change and investigates how much 
each generating unit needs to be moved in order that the 
new load served at the most economic operating point. 
2.2.6 Linear Programming: 
Linear programming (LP) according to Momoh J.A et al 
(1993) is a technique for optimization of a linear objective 
function subject to linear equality and linear in-equality 
constraints. Informally, linear programming determines the 
way to achieve the best outcome (such as maximum profit 
or lowest cost) in a given mathematical model and given 
some list of requirements represented as linear equations. 
For example if f is function defined as follows 
f( x1, x2, ……….Xn )= c1 x1+ c2 x2+ …….cnxn+ d   (2.13) 
A linear programming method will find a point in the 
optimization surface where this function has the smallest 
(or largest) value. Such points may not exist, but if they do, 
searching through the optimization surface vertices is 
guaranteed to find at least one of them. Linear programs 
are problems that can be expressed in canonical form 
Maximize CT X 
Subject to AX ≤ b 
X represents the vector of variables (to be determined), 
while C and b are vectors of (known) coefficients and A is a 
(known) matrix of coefficients. The expression to be 
maximized or minimized is called the objective function (cT 
in this case). The equation AX ≤ b is the constraints which 

specify a convex polyhedron over which the objective 
function is to be optimized. 
2.2.7 Dynamic Programming: 
According to reference [4] when cost functions are no-
convex equal incremental cost methodology cannot be 
applied. 
Under such circumstances, there is a way to find an 
optimum dispatch which use dynamic programming 
method. In dynamic Programming is an optimization 
technique that transforms a maximization (or 
minimization) problem involving n decision variables into 
n problems having only one decision variable each. This is 
done by defining a sequence of Value functions V1,V2 ,... V 
n , with an argument y representing the state of the system. 
The definition of Vi(y) is the maximum obtainable if 
decisions 1, 2 ...I are available and the state of the system is 
y. The function V1 is easy to find. For I=2,...n, Vi at any state 
y is calculated from Vi -1 by maximizing, over the I-th 
decision a simple function (usually the sum) of the gain of 
decision i and the function Vi -1 at the new state of the 
system if this decision is made. Since Vi -1 has already been 
calculated, for the needed states, the above operation yields 
Vi for all the needed states.  
Finally, Vn at the initial state of the system is the value of 
the optimal solution. The optimal values of the decision 
variables can be recovered, one by one, by tracking back the 
calculations already performed. 
3.0 PSO AS AN OPTIMIZATION TOOL 
Particle swarm optimization (PSO) as defined in [5] is a 
population based stochastic optimization technique 
developed in 1995, inspired by social behavior of bird 
flocking or fish schooling (SaumendraSarangi, 2009). PSO 
shares many similarities with evolutionary computation 
techniques such as Genetic Algorithms (GA). The system is 
initialized with a population of random solutions and 
searches for optima by updating generations. However, 
unlike GA, PSO has no evolution operators such as 
crossover and mutation. In PSO, the potential solutions, 
called particles, flythrough the problem space by following 
the current optimum particles. The detailed information 
will be given in following sections. The advantages of PSO 
are that PSO is easy to implement and there are few 
parameters to adjust. Unlike Lambda iteration and other 
traditional methods, PSO takes little iteration to get an 
optimal dispatch. PSO is a form of Artificial Intelligence 
which has been successfully applied in many areas: 
function optimization, artificial neural network training, 
fuzzy system control, and other areas. 
3.1 ALGORITHM OF PARTICLE SWARM 
OPTIMISATION: 
PSO simulates the behaviors of bird flocking. Suppose the 
following scenario: a group of birds are randomly searching 
food in an area. There is only one piece of food in the area 
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being searched. All the birds do not know where the food 
is. But they know how far the food is in each iteration. So 
what's the best strategy to find the food? The effective one 
is to follow the bird, which is nearest to the food. PSO 
learned from the scenario and used it to solve the 
optimization problems. In PSO, each single solution is a 
"bird" in the search space. We call it "particle". All of 
particles have fitness values, which are evaluated by the 
fitness function to be optimized, and have velocities, which 
direct the flying of the particles. The particles fly through 
the problem space by following the current optimum 
particles. 
PSO is initialized with a group of random particles 
(solutions) and then searches for optima by updating 
generations. In every iteration, each particle is updated by 
following two "best" values. 
The first one is the best solution (fitness) it has achieved so 
far. (The fitness value is also stored.) 
This value is called Pbest. Another "best" value that is 
tracked by the particle swarm optimizer is the best value, 
obtained so far by any particle in the population. This best 
value is a global be stand called g-best. When a particle 
takes part of the population as its topological neighbors, the 
best value is a local best and is called p-best. After finding 
the two best values, the particle updates its velocity and 
positions with following equation (3.1) and (3.2). 
Vi(u+1) = w *Vi (u)+C1*r and ( )*(pbesti –Pi (u))+C2*rand ( 
)*(gbesti –Pi (u))  (2.14) 
Pi (u+1) =  Pi (u)+ Vi(u+1)      (2.15a) 
The term r and ( )*(pbest i –Pi (u)) is called particle memory 
influence 
The term r and ( )*( gbesti–Pi (u)) is called swarm influence. 
Vi(u) which is the velocity of ith particle at iteration ‘u’ must 
lie in the range 
Vmin≤ Vi(u) ≤ Vmax 
• The parameter Vmax determines the resolution, or 

fitness, with which regions are to be searched between 
the present position and the target position 

• If Vmax is too high, particles may fly past good solutions. 
If V minimum is too small, particles may not explore 
sufficiently beyond local solutions. 

• In many experiences with PSO, Vmax was often set at 10-
20% of the dynamic range on each dimension. 

• The constants C1and C2 pull each particle towards p best 
and g best positions. 

• Low values allow particles to roam far from the target 
regions before being tugged back. On the other hand, 
high values result in abrupt movement towards, or past, 
target regions. 

• The acceleration constants C1 and C2 are often set to be 
2.0 according to past experiences 

• Suitable selection of inertia weight ‘ω’ provides a balance 
between global and local explorations, thus requiring less 

iteration on average to find a sufficiently optimal 
solution. 

• In general, the inertia weight w is set according to the 
following equation, 

W = Wmax 



 −

−
max

minmax
ITER

WW
 x ITER   (2.15b) 

Where W -is the inertia weighting factor, Wmax - 
maximum value of weighting factor 
Wmin - minimum value of weighting factor, ITERmax- 
maximum number of iterations 
ITER - current number of iteration, The flow chart is as 
shown below  
 
 
  

If gbest is the optimal solution 

 

Initialize particles with random position and velocity vectors 

end 

Start 

For each particle position (p) evaluate the fitness 

If fitness (p) is better than fitness o (pbest) then Pbest = p 

Set best of pbest as g best 
 

Update particle velocity and position 

YES 

 

NO 
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3.2 ECONOMIC LOAD DIPSPATCH WITHOUT LOSS: 
The economic load dispatch problem deals with the 
minimization of cost of generating the power at any load 
demand. The study of this economic load can be classified 
into two different groups, one is economic load dispatch 
without the transmission line losses and other one is 
economic load dispatch with transmission line losses.  
3.4.1 ECONOMIC LOAD DIPSPATCH WITHOUT LOSS 
USING LAGRAGIAN METHOD 
The economic load dispatch problem as reported in [6] and 
stated by Selvakumar and Thanushkodi (2007) is defined 
as:     Min FT = ∑ 𝐹𝑛  𝑁

𝑛=1                                              (2.16)  
Subject to 
    PD = ∑ 𝑃n𝑁

𝑛=1                                                              (2.17) 
Where FT is total fuel (or gas) input to the system, Fn the 
fuel input to nth unit, PD the total load demand and Pn the 
generation of nth unit. 
By making use of Lagrangian multiplier the auxiliary 
function is obtained as 
F = F 𝑇 + λ (P 𝐷 − (∑ Pn𝑁

𝑖=1 ))                              (2.18)  
Where λ is the Lagrangian multiplier. 
Differentiating F with respect to the generation Pn and 
equating to zero gives the condition for optimal operation 
of the system. 
𝜕𝐹
𝜕𝑃𝑛

=
𝜕𝐹𝑇
𝜕𝑃𝑛

+ 𝜆(0 − 1) = 0                                                  (2.19) 

Since    FT   =     F1+ F2 + F3 + - - - - - - -+ Fn             (2.20) 
∴ 𝜕𝐹̞
𝜕𝑃𝑛

= 𝜕𝐹𝑛
𝜕𝑃𝑛

 = λ                    (2.21) 
And therefore the condition for optimum operation is 
𝜕𝐹1
𝜕𝑃1

  =  𝑑𝐹2
𝑑𝑃2

 = ……… = 𝜕𝐹𝑛
𝜕𝑃ᶰ

 =λ                                           (2.22) 

Here =  𝜕𝐹𝑛
𝜕𝑃𝑛

 =incremental production cost of plant n in ₦.per 
MWhr. 
The incremental production cost of a given plant over a 
limited range is represented by 
∂Fn 
∂Pn

 = F n P n + f n                                     (2.23) 
Where Fnn = slope of incremental production cost curve 
Fn = intercept of incremental production cost curve 
The equation (3.5) mean that the machine be so loaded that 
the incremental cost of production of each machine is same. 
It is to be noted here that the active power generation 
constraints are taken into account while solving the 
equations which are derived above. If these constraints are 
violated for any generator it is tied to the corresponding 
limit and the rest of the load is distributed to the remaining 
generator units according to the equal incremental cost of 
production. 
3.2.1 ELD WITHOUT LOSS USING PSO 
When any optimization process is applied to the ELD 
problem some constraints are considered. 
In this work two different constraints are considered. 
Among them the equality constraint is summation of all the 
generating power must be equal to the load demand and 

the inequality constraint is the powers generated must be 
within the limit of maximum and minimum active power of 
each unit. The sequential steps of the proposed PSO 
method are given below. 
Step 1: 
The individuals of the population are randomly initialized 
according to the limit of each unit including individual 
dimensions. The velocities of the different particles are also 
randomly generated keeping the velocity within the 
maximum and minimum value of the velocities. These 
initial individuals must be feasible candidate solutions that 
satisfy the practical operation constraints. 
Step 2: 
Each set of solution in the space should satisfy the equality 
constraints .So equality constraints are checked. If any 
combination doesn’t satisfy the constraints then they are set 
according to the power balance equation. 
Step 3: 
The evaluation function of each individual Pgi, is calculated 
in the population using the evaluation function F. 
Here F is 
F= a×( Pgi)2 + b× Pgi+c         (2.24) 
Where a, b, c are constants. The present value is set as the 
Pbest value. 
Step 4: 
Each Pbest values are compared with the other pbest values 
in the population. The best evaluation value among the p-
bests is denoted as gbest. 
Step 5: 
The member velocity v of each individual Pg is modified 
according to the velocity update 
Equation 
Vid (u+1) = W *Vi (u) +C1*rand ( )*(pbest id -Pgid(u)) +C2*rand ( 
)*(gbestid–Pgid(u))   (2.25) 
Where u is the number of iteration according to Saumendra 
Sarangi (2009). 
Step 6: 
The velocity components constraint occurring in the limits 
from the following conditions are checked 





Pmax*0.5+ =Vdmax 
Pmin*0.5- =Vdmin 

Jeyakumar DN et al (2006) 

Step 7: 
The position of each individual Pg is modified according to 
the position update equation 
Pgid(u+1) = Pgid(u) + Vid (u+1)     (2.26) 
 
 
Step 8: 
If the evaluation value of each individual is better than 
previous pbest, the current value is set to 
be pbest. If the best pbest is better than gbest, the value is 
set to be gbest. 
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Step 9: 
If the number of iterations reaches the maximum, then go 
to step 10.Otherwise, go to step 2. 
Step 10: 
The individual that generates the latest gbestis the optimal 
generation power of each unit with the minimum total 
generation cost. 
3.3 ECONOMIC LOAD DIPSPATCH WITH LOSS: 
When transmission losses are included and coordinated, 
the following points must be kept in mind for economic 
load dispatch solution 
1.  Whereas incremental transmission cost of production 

of a plant is always positive, the incremental 
transmission losses can be both positive and negative. 

2.  The individual generators will operate at different 
incremental costs of production. 

3.  The generation with highest positive incremental 
transmission loss will operate at the lowest incremental 
cost of production 

3.3.1 ECONOMIC LOAD DIPSPATCH WTH LOSS 
USING PSO 
When the losses are considered the optimization process 
becomes little bit complicated.  
Since the losses are dependent on the power generated of 
the each unit, in each generation the loss changes. The P-
loss can be found out by using the equation below 
according to Walters DC. (1993) 
P L   =  ∑ ∑ 𝑃𝑚𝐵𝑚𝑛𝑃𝑛𝑛𝑚      (2.27) 
Where Bmn are the loss co-efficient. The loss co-efficient can 
be calculated from the load flow equations or it may be 
given in the problem. However in this work for simplicity 
the loss coefficient are given which are the approximate 
one. Some parts are neglected. The sequential steps to find 
the optimum solution are 
Step 1: 
The power of each unit, velocity of particles, is randomly 
generated which must be in the maximum and minimum 
limit. These initial individuals must be feasible candidate 
solutions that satisfy the practical operation constraints. 
Step 2: 
Each set of solution in the space should satisfy the 
following equation 
∑ 𝑃𝑔𝑖𝑁
𝐼=1 = P D + P L                              (2.28) 

PL calculated by using above (2.27).Then equality 
constraints are checked. If any combination doesn’t satisfy 
the constraints then they are set according to the power 
balance equation. 
P d =  P D + P L -  ∑ 𝑃𝑖𝑁

𝐼=1
𝐼≠𝑑

          (2.29) 

Step 3: 
The cost function of each individual Pgi, is calculated in the 
population using the evaluation function F . 
Here F is 

F= a × (Pgi)2+b ×Pgi+c                          (2.30) 
Where a, b, c are constants. The present value is set as the 
pbest value. 
Step 4: 
Each pbest values are compared with the other pbest values 
in the population. The best evaluation value among the 
pbest is denoted as gbest. 
Step 5: 
The member velocity v of each individual Pg is updated 
according to the velocity update 
Equation 
Vid (u+1) = W*Vi (u) +C1*r and ( )*(pbest id -Pgid (u)) +C2*r and 
( )*( gbestid–Pgid(u))     (2.31) 
Where u is the number of iteration 
Step 6: 
The velocity components constraint occurring in the limits 
from the following conditions are checked 
Vdmin = -0.5*Pmin 
Vdmax = +0.5*Pmax 
Step 7: 
The position of each individual Pg is modified according to 
the position update equation 
Pgid(u+1) = Pgid(u) + Vid(u+1)     (2.32) 
Step 8: 
The cost function of each new is calculated If the evaluation 
value of each individual is better than previous pbest; the 
current value is set to be pbest. If the best pbestis better than 
gbest, the value is set to be gbest. 
Step 9: 
If the number of iterations reaches the maximum, then go 
to step 10.Otherwise, go to step 2. 
Step 10: 
The individual that generates the latest gbest is the optimal 
generation power of each unit with the minimum total 
generation cost. 
3.3.2 ELD WTH LOSS USING LANGRANGIAN 
METHOD 
The optimal load dispatch problem including transmission 
losses is defined as 
Min FT = ∑ 𝐹𝑛𝑁

𝑛=1                (2.33) 
Subject to PD +PL -∑ 𝑃𝑛𝑁

𝑛=1   (2.34) 
Where PL is the total system loss which is assumed to be a 
function of generation and the other term have their usual 
significance. 
Making use of the Lagrangian multiplier λ. The auxiliary 
function is given by 
F=FT +λ (PD+PL- ΣP N)    (2.35) 
The partial differential of this expression when equated to 
zero gives the condition for optimal load dispatch, i.e. 
𝜕𝐹
𝜕𝑃𝑛

  =  𝜕𝐹˕
𝜕𝑃ⁿ

 + λ (𝜕𝑃𝑙
𝜕𝑃𝑛

 − 1) =  0      (2.36) 
𝜕𝐹
𝜕𝑃𝑛

 + λ 𝜕𝑃
𝜕𝑃𝑛

= λ                                          (2.37) 
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Here the term𝜕𝑃𝑙
 𝜕𝑃𝑛

is known as the incremental transmission 
loss at plant n and λ is known as the incremental cost of 
received power in ₦.per MWhr. The equation (2.37) is a set 
of n equations with (n+1) unknowns’ .Here n generations 
are unknown and λ is also unknown. These equations are 
known as coordination equations because they coordinate 
the incremental transmission losses with the incremental 
cost of production. 
To solve these equations the loss formula equation is 
expressed in terms of generations and is approximately 
expressed as 
P L =  ∑ ∑ 𝑃𝑚𝐵𝑚𝑛𝑃𝑛𝑛𝑚 R    (2.38) 
Where Pm and Pn are the source loadings, Bmn the 
transmission loss coefficient. The formula is derived under 
the following assumptions; 
1.  The equivalent load current at any bus remains a 

constant complex fraction of the total equivalent load 
current. 

2.  The generator bus voltage magnitudes and angles are 
constant 

3.  The power factor of each source is constant. 
The solution of coordination equation requires the 

calculation of  
𝜕𝑃𝑙
𝜕𝑃ᶰ

  = 2∑ 𝐵𝑚𝑛𝑚  Pm     (2.39) 

Also𝜕𝐹𝑛
𝜕𝑃𝑛

 = FmnPn +fn     
 (2.40)  
According to Park J. H. et al (1993) the coordination 
equation can be rewritten as 
Fnn x Pn + Fn + λ∑ 2𝐵𝑚𝑛𝑚  P = λ            (2.41) 
Solving for Pnwe obtain 

Pn = 

mn
mn

nm
mmn

B
F

PBfn

2

21

+

−
− ∑

=

λ

λ
   (2.42) 

4.0 RESULTS AND DISCUSSION 
The different methods discussed earlier are applied to two 
cases to find out the minimum cost for any demand. Case I 
involves three generating units using SAPELE as a case 
study and Case II involves six generating units using 
AFAM as a case study.  

Results of Particle Swarm Optimization (PSO) are 
compared with the conventional lambda iteration method. 
In the first case transmission losses are neglected and then 

transmission line losses are also considered. All these 
simulation are done on MATLAB 7.12 environment. 
4.1 CASE STUDY 1- SAPELE: THREE UNIT SYSTEM 
The three generating units considered are having different 
characteristics. Their cost function characteristics are given 
by following equations 









?/Hr 78+7.97P3+2 0.00482P3=F3
?/Hr 310+7.85P2+2 0.00194P2=F2

?/Hr 561+7.92P1+0.00156P12=F1
 IEEE Trans. 

Power Appa. System PAS-90 (1971)  
According to the constraints considered in this work among 
inequality constraints only active power constraints are 
considered. The unit operating ranges are: 
100 MW ≤ P1 ≤ 600 MW 
100 MW ≤ P2 ≤ 400 MW 
50 MW ≤ P3 ≤ 200 MW 
The transmission line losses can be calculated by knowing 
the loss coefficient. The Bmn loss coefficient matrix is given 
by 

Bmn= 
















0.0000450 0.000100 0.004820
0.0000100 0.000015 0.001940
0.0000075 0.0000050.000075

 

References: IEEE Trans. Power Appa.Syst PAS-90 (1971), 
Saumendra Sarangi (2009)  
 
4.1.1 ELD WITHOUT TRANSMISSION LINE LOSSES 
4.1.1.1 Lambda iteration method 
In this method initial value of lambda is guessed in the 
feasible reason that can be calculated from derivative of the 
cost function. For the convergence of the problem the delta 
lambda should be selected small. Here delta lambda is 
selected 0.0001 and the value of lambda must be chosen 
near the optimum point, according to Ting T. O. et al. 
Table4.1: Lambda Iteration Method without Losses 

It is observed that if the lambda value is not selected in the 
feasible range the cost is not converging. Also, the time 
taken to converge also depended on the lambda selection 
and delta lambda value. It nearly takes 1000-2000 iterations 
to converge according to Momoh J. A. et al.(1999).  
 

 

4.1.1.2 Particle Swarm Optimization (PSO) method 

 
In this method the initial particles are randomly generated 
within the feasible range. The parameters c1, c2 and inertia 
weight are selected for best convergence characteristic. 
Here c1 =2.01 and c2 = 2.01 Here the maximum value of w is 

S/N0 POWER 
DEMAND 
(MW) 

P1 
(MW) 

P2 
(MW) 

P3 
(MW) 

Ft  
₦/Hr 

Time 
in secs 

1 450 205.4758     183.2692     61.3158    4.6523e+003    1.2765 
2 580 266.5833     232.4072 81.0934 5.7777e+003 1.1297 
3 700 322.9862 277.7621 99.3482 6.8384e+003 2.1973 
4 800 369.9026  315.4887 114.5328 7.7385e+003 0.9720 

5 900 416.8940 353.2756 129.7416 8.6533e+003 0.9619 
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chosen 0.9 and minimum value is chosen as 0.4. The 
velocity limits are selected as Vmax= 0.5*Pmax and the 
minimum velocity is selected as Vmin= -0.5*Pmin. There 
are 10 no of particles selected in the population 
Table 4.2: PSO method without loss 

S/
N0 

POWER 
DEMAND 
(MW) 

P1 
(MW) 

P2 
(MW) 

P3 
(MW) 

Ft  
₦/Hr 

Time in 
secs 

1 450 205.447
3     

183.2462     61.3065     4.6523e+003     1.2765 

2 580 266.543
9     

232.3755 81.0806 5.7777e+003 1.1297 

3 700 322.940
8 

277.7256 99.3335 6.8384e+003 2.1973 

4 800 369.937
7 

315.5177 114.5446 7.7385e+003  0.9720 

5 900 416.935
8 

353.3090 129.7552 8.6533e+003 0.9619 

 

4.1.1.3 COMPARISON OF COST BETWEEN PSO AND 
CONVENTIONAL METHODS 

The lowest costs obtained in two different methods are 
compared for five different power demands. It has been 
observed that for all the demand PSO gives same value of 
cost which nearly equal to the cost of lambda-iteration 
method. But in both PSO the cost curve converges within 20 
to 40 iterations but conventional method takes more than 
1000 iterations, according to Momoh J. A. et al.(1999).   
In conventional method selection of lambda value in the 
feasible range is also required. If it is not selected in the 
feasible range then it will not converge. 
 
 
 
 
 
4.3 Comparison of cost in the two different methods 
 
4.1.2 ELD WITH TRANSMISSION LINE LOSSES 
4.1.2.1 Lambda iteration method 
In this method initial value of lambda is guessed in the 
feasible reason that can be calculated from derivative of the 
cost function. For the convergence of the problem the delta 
lambda should be selected small. Here delta lambda is 
selected 0.0001 and the value of lambda must be chosen 
near the optimum point. It has been observed that then 
minimum cost curve converges after so many iterations 
than in the no loss case. Here the cost curve converges 
within the range of 2000to 5000 iterations. The lambda 
selection is important for convergence of cost curve. 
Table 4.4: Lambda iteration method with loss 

S/N0 POWER 
DEMAND 

P1 
(MW) 

P2 
(MW) 

P3 
(MW) 

Loss 
in 

Ft 
₦/Hr 

Time 
in secs 

(MW) (MW) 

1 450 185.1088         198.6346     67.5762     1.3675    4.6649e+003 0.0603 
2 580 239.7541     253.0043 89.4859 2.2968 5.7996e+003 0.1773 
3 700 289.9928 303.5003 109.8356 3.3685 6.8716e+003 0.2396 
4 800   31.7403 345.8564 126.9058 4.4200 7.7842e+003 0.0841 
5 900 373.3016 388.3666 144.0389 5.6136 8.7122e+003 0.0930 

 
4.1.2.2 PSO method 
In this method the initial particles are randomly generated 
within the feasible range. The parameters c1, c2 and inertia 
weight are selected for best convergence characteristic. 
Here, c1 = 
1.99 and c2 = 1.99. Here the maximum value of w is chosen 
as 0.9 and minimum value is chosen as 0.4. The velocity 
limits are selected as Vmax = 0.5*Pmax and the minimum 
velocity is selected as Vmin = -0.5*Pmin. There are 10 no of 
particles selected in the population. For different value of c1 
and c2 the cost curve converges in the different region. So, 
the best value is taken for the minimum cost of the 
problem. If the no of particles are increased then cost curve 
converges faster. It can be observed that the loss has no 
effect on the cost characteristic. 
 

 

 

Table 4.5: PSO method with loss 

S/N
0 

POWER 
DEMAND 
(MW) 

P1 
(MW) 

P2 
(MW) 

P3 
(MW) 

Loss in 
(MW) 

Ft 
₦/Hr 

Time in 
secs 

1 450 204.7077      188.6082   58.0591     1.3750  4.6642e+003  5.3622 
2 580 265.8435  239.6414 76.8248 2.3096 5.7981e+003 4.2999 
3 700 322.3586 286.9045 94.1244 3.3876 6.8690e+003 5.6332 
4 800 369.5131 326.3878 108.548 4.4446 7.7792e+003 4.1134 
5 900 416.7222 365.9702 122.9540 5.6464 8.7059e+003 4.0639 

 

4.1.2.3 Comparison of cost in the two different methods 

It has been observed that when transmission line losses are 
included the minimum cost we found in the PSO method is 
less than the conventional method.  
Table 4.6 Comparison of cost in the two different 
methods with losses 

S/N0 Power 
Demand 
(MW) 

Costs in ₦/Hr 
Lambda 
iteration 
method 

Costs in 
₦/Hr PSO 
method 

Percentage 
difference  

S/N0 Power  
Demand (MW) 

Costs in ₦/Hr 
Lambda iteration 
method 

Costs in ₦/Hr 
PSO method 

Percentage 
difference 

1 450 4652.3    4652.3     0.0 
2 580 5777.7 5777.7 0.0 
3 700 6838.0 6838.4 0.99 
4 800 7738.5 7738.5 0.99 
5 900 8653.5 8653.3 0.99 
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1 450 4664.9 4664.2 1.0% 
2 580 5799.6 5798.1 1.0% 
3 700 6871.6 6869.0 1.0% 
4 800 7784.2 7779.2 1.0% 
5 900 8712.2 8705.9 1.0% 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1:  Bar chart show the percentage difference for 
power demands in three unit system 

 

 

 

4.2 CASE STUDY 2- AFAM - SIX UNIT SYSTEM 

The cost function of the six units are given as follows 
















N/Hr 1356.6592+38.27041P3+0.01799P32 = F6
N/Hr 1658.5596+36.32782P5+0.02111P52 = F5
N/Hr 1243.5311+38.30553P4+0.03546P42 = F4

N/Hr 1049.9977+40.39655P3+0.02803P32 = F3
N/Hr 451.32513+46.15916P2+0.10587P22 = F2
N/Hr 756.79886+38.53P1+0.15240P12 = F1

 
Reference: IEEE Trans. Power Appa. System PAS-90 (1971)  
 
 
The unit operating ranges are 
10 MW ≤ P1 ≤ 125 MW 
10 MW ≤ P2 ≤ 150 MW 
35 MW ≤ P3 ≤ 225 MW 
35 MW ≤ P4 ≤ 210 MW 
130 MW ≤ P5 ≤ 325 MW 

125 MW ≤ P6 ≤ 315 MW 
 
 
Bmn coefficient matrix is given as 
Bmn= 































0.000085 0.000032 0.000025 0.000019 0.000020 0.000022
0.000032 0.000069 0.000030 0.000024 0.000015 0.000026
0.000025 0.000030 0.000071 0.000017 0.000016 0.000019
0.000019 0.000024 0.000017 0.000065 0.000013 0.000015
0.000020 0.000015 0.000016 0.000013 0.000060 0.000017
0.000022 0.000026 0.000019 0.000015 0.000017 0.00014

 
References: IEEE Trans. Power Appa.Syst PAS-90 (1971), 
Saumendra Sarangi (2009)  
4.2.1 ELD WITHOUT TRANSMISSION LINE LOSSES 
4.2.1.1 Lambda iteration method 
The initial value of lambda is guessed in the feasible reason 
that can be calculated from derivative of the cost function. 
For the convergence of the problem the delta lambda 
should be selected small. Here delta lambda is selected 
0.0001 and the value of lambda must be chosen near the 
optimum point. In this case also the convergence is largely 
affected by the selection of lambda and delta value. The 
time taken for convergence increases than the three unit 
system. 
 

 

Table 4.7: AFAM 6-Unit Lambda method without loss 

S/
N
0 

POWE
R 
DEMA
ND 
(MW) 

P1 
(MW) 

P2 
(MW) 

P3 
(MW) 

P4 
(MW) 

P5 
(MW) 

P6 
(MW) 

Ft 
 ₦/Hr 

Time  
(S) 

1 600 21.2237 10 82.0984 94.3804 205.3805 187.0088 3.1445e+004 1.2722 
2 700 25.0080 10 102.6736 110.6444 232.7004 219.0667 3.6003e+004  1.4366 
3 800 28.7924 10 123.2496 126.9091 260.0213 251.1259 4.0676e+004 1.0977 
4 860 31.0628 10 135.5936 136.6666 276.4118 270.3590 4.3535e+004 1.0890 
5 900 32.5455 10.818

5 
143.6555 143.0393 287.1165 282.9201 4.5464e+004 1.1313 

 
4.2.1.2 PSO method 
The initial particles are randomly generated within the 
feasible range. The parameters c1, c2and inertia weight are 
selected for best convergence characteristic. Here c1=1.99 
and c2=1.99. 
Here the maximum value of w is chosen 0.9 and minimum 
value is chosen 0.4.the velocity limits are selected as Vmax= 
0.5*Pmax and the minimum velocity is selected as Vmin= -
0.5*Pmin. There are 10 no of particles are selected in the 
population. For different value of c1 and c2 the cost curve 
converges in the different region. So the best value is taken 
for the minimum cost of the problem. If the no of particles 
are increased then cost curve converges faster. It can be 
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observed the loss has no effect on the cost characteristic. It 
has been observed even if the no of units are increased the 
convergence is less affected. 
Table 4.8: Six unit system PSO method without losses 

S
/
N 

POWER 
DEMA
ND 
(MW) 

P1 
(MW) 

P2 
(MW) 

P3 
(MW) 

P4 
(MW) 

P5 
(MW) 

P6 
(MW) 

Ft 
 ₦/Hr 

Time 
in secs 
 

1 600 21.2075 10.0000 182.0915 94.3879 205.3306 186.9824 3.1445e+004 1.2722 
2 700 25.0050 10.0000 102.6536 110.6295 232.6774 219.0345 3.6003e+004 1.4366 
3 800 28.7768 10.0000 123.3081 126.8297 260.0036 251.0819 4.0676e+004 1.0977 
4 860 31.0603 10.0000 135.5660 136.6517 276.3712 270.3508 4.3535e+004 1.0890 
5 900 32.3900 11.2864 143.2936 143.0721 287.3322 282.6256 4.5464e+004 1.1313 

 
Table 4.9: AFAM 6-Unit PSO method with loss 

S/
N
O 

POWER 
DEMAN
D 

(MW) 

P1 

(MW) 

P2 

(MW) 

P3 

(MW) 

P4 

(MW) 

P5 

(MW) 

P6 

(MW) 

Loss in 
(MW) 

 

Ft 

 ₦/Hr 

Time 
in secs 

1 600 23.9071 10.0002 95.6241 100.7082 202.8561 181.1409 14.2365 3.2094e+004 5.9457 

2 700 28.3153 10.0013 118.9551 118.6595 230.7771 212.7232 19.4314 3.6912e+004 5.4326 
3 800 32.6285 14.4681 141.5402 136.0307 257.6676 242.9956 25.3308 4.1896e+004 5.6267 

4 860 35.1904 18.4186 154.9572 146.3244 273.5188 260.8149 29.2244 4.4966e+004 6.0545 

5 900 36.8945 121.0830 163.9219 153.2221 284.1644 272.7006 31.9865 4.7045e+004 5.0520 

 
 

 

 

 

 

 

Table 4.10: AFAM 6-Unit Lambda method with loss 
S/
N
0 

POWER 
DEMA
ND(M
W) 

P1(M
W) 

P2(M
W) 

P3(MW) P4(M
W) 

P5(M
W) 

P6(M
W) 

PLoss  
(MW) 

Ft ( ₦/Hr) Time 
secs 

1 600 24.2556 1.6559 97.5030 102.1451 205.0691 183.7279 14.4509 3.2082e+004 0.2492 
2 700 28.4230 8.0125 119.4254 119.0348 231.3208 213.3747 19.4971 3.6916e+004 3.5129 
3 800 32.6336 14.4877 141.5599 136.0534 257.6769 243.0241 25.3364 4.1901e+004 3.4349 
4 860 35.1851  18.4310 154.9597 146.3424 273.5622 260.8480 29.2315     4.4971e+004 3.4287 
5 900 36.8971 21.0809 163.9414 153.2352 284.1824 272.7509 31.9938 4.7050e+004 3.2538 

 
4.2.1.3 Comparison of Cost in Two Different Methods 
It has been observed that when the numbers of units are 
increased the minimum cost we found in the PSO method 
is less than the conventional method.  The performance 
depends on randomly generated particle in PSO. At all 
times, PSO gives better result. 
Table 4.11 Comparison of cost in the two different 
methods with losses 

S/N0 Power Demand 
(MW) 

Costs in ₦/Hr 
Lambda 
iteration 
method 

Costs in 
₦/Hr PSO 
method 

Percentage 
difference   

1 600 32082.1 32080.68 0.99 
2 700 36916.1 36912.2 0.99 
3 800 41901.1 41896.2 0.99 
4 860 44971.1 44966.08 0.99 
5 900 47050.1 47045.38 0.99 

 
     

 

 

 

 

 

 

 

 

Figure 4.2:  Bar chart show the percentage difference for 
power demands in six unit system  

5. CONCLUSION  

Economic load dispatch in electric power sector is an 
important task, as it is required to supply the power at the 
minimum cost which aids in profit-making. As the 
efficiency of newly added generating units are more than 
the previous units the economic load dispatch has to be 
efficiently solved for minimizing the cost of the generated 
power. 
Load dispatch problem here solved for two different cases. 
SAPELE with three units in generating stations and AFAM 
with six units in the generating stations. 
Each problem is solved by three different methods in the 
MATLAB environment. 
Before the thesis draws to a close, major studies reported in 
this work and the general conclusions that emerge out from 
this work are highlighted. The conclusions are arrived at 
based on the performance and the capabilities of the PSO 
application presented here. This finally leads to an outline 
of the future directions for research and development 
efforts in this area. 
The main conclusions drawn are: 
Three unit system: 
Both the problem of three units system without loss and 
with loss is solved by two different methods. In Lambda-
iteration method better cost is obtained but the problem 
converges when the lambda value is selected within the 
feasible range. But the cost characteristic takes many 
number of iteration converge. In PSO method the cost 
characteristic converges in less number of iterations. 
When transmission losses are considered PSO method 
gives a better result than the Lambda iteration method.  
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In PSO method selection of parameters c1, c2 and w is very 
much important. The best result obtained when c1 = 2.01 
and c2= 2.01 and w value is chosen near 0.8. These results 
are similar when w is chosen according to the formula 
used. In PSO better cost is obtained than in the Lambda-
iteration method 
Six unit system: 
The problem of six units system without loss and with loss 
is solved by two different methods. 
In Lambda-iteration method better cost is obtained but the 
problem converges when the lambda value is selected 
within the feasible range. The cost characteristic takes many 
numbers of iterations to converge. In PSO method the cost 
characteristic converges in less number of iterations. When 
transmission losses are considered PSO method gives a 
better result than the Lambda iteration method. In case of 
Lambda iteration method the number of iterations to 
converge is also increases. But in PSO method no of 
iterations are not affected when the transmission line losses 
are considered. In PSO method the better result depends on 
the randomly generated particles. So, PSO gives better 
result. 
In PSO method selection of parameters c1, c2 and w is also 
important like above. The best result obtained when c1=1.99 
and c2=1.99 and w value according to the formula used. 
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